题目内容

【题目】如图,在△ABC中,∠B=60°,过点C作CD∥AB,若∠ACD=60°,求证:△ABC是等边三角形.

【答案】见解析.

【解析】

证法一:根据平行线的性质可知,∠A=60°,所以∠ACB=60°,即可证明△ABC是等边三角形.

证法二:根据平行线的性质可知,∠B=60°,所以∠BCD=120°,∠ACB=60°,即可证明△ABC是等边三角形.

证明:

证法一: ∵ CDAB,

A=ACD=60°.

B=60°,

ABC中,

ACB=180°-A-B=60°.

A=B=ACB.

ABC是等边三角形.

证法二: ∵ CDAB,

B+BCD=180°.

B=60°,

BCD=120°.

ACB=BCD-ACB=60°

ABC中,

A=180°-B-ACB=60°.

A=B=ACB

ABC是等边三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网