题目内容

【题目】如图,AB是O的直径,AE交O于点E,且与O的切线CD互相垂直,垂足为D.
(1)求证:∠EAC=∠CAB;
(2)若CD=4,AD=8:①求O的半径;②求tan∠BAE的值.

【答案】
(1)证明:连接OC.

∵CD是⊙O的切线,

∴CD⊥OC,

又∵CD⊥AE,

∴OC∥AE,

∴∠1=∠3,

∵OC=OA,

∴∠2=∠3,

∴∠1=∠2,

即∠EAC=∠CAB;


(2)解:①连接BC.

∵AB是⊙O的直径,CD⊥AE于点D,

∴∠ACB=∠ADC=90°,

∵∠1=∠2,

∴△ACD∽△ABC,

∵AC2=AD2+CD2=42+82=80,

∴AB= =10,

∴⊙O的半径为10÷2=5.

②连接CF与BF.

∵四边形ABCF是⊙O的内接四边形,

∴∠ABC+∠AFC=180°,

∵∠DFC+∠AFC=180°,

∴∠DFC=∠ABC,

∵∠2+∠ABC=90°,∠DFC+∠DCF=90°,

∴∠2=∠DCF,

∵∠1=∠2,

∴∠1=∠DCF,

∵∠CDF=∠CDF,

∴△DCF∽△DAC,

∴DF= =2,

∴AF=AD﹣DF=8﹣2=6,

∵AB是⊙O的直径,

∴∠BFA=90°,

∴BF= =8,

∴tan∠BAD=


【解析】(1)首先连接OC,由CD是⊙O的切线,CD⊥OC,又由CD⊥AE,即可判定OC∥AE,根据平行线的性质与等腰三角形的性质,即可证得∠EAC=∠CAB;(2)①连接BC,易证得△ACD∽△ABC,根据相似三角形的对应边成比例,即可求得AB的长,继而可得⊙O的半径长;②连接CF与BF.由四边形ABCF是⊙O的内接四边形,易证得△DCF∽△DAC,然后根据相似三角形的对应边成比例,求得AF的长,又由AB是⊙O的直径,即可得∠BFA是直角,利用勾股定理求得BF的长,即可求得tan∠BAE的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网