题目内容

如图,Rt△ABC中,∠ACB=90°,以AC为直径作⊙O,交AB于D,E为BC中点,连ED.
(1)求证:ED是⊙O的切线;
(2)若⊙O半径为3,ED=4,求AB长?
(1)证明:
方法一:连接OD,OE,CD,
∵∠ADC=90°,
∴∠CDB=90°,
∵E是BC的中点,
∴DE=CE,
∴∠EDC=∠ECD,
∵OC=OD,
∴∠ODC=∠OCD,
∴∠ODC+∠EDC=∠OCD+∠ECD=90°,
即OD⊥ED,
∴ED与⊙O相切.
方法二:连接OE,OD,
∵E是BC的中点,∠BDC=90°,
∴DE=CE,
又∵OD=OC,OE=OE,
∴△ODE≌△OCE,
∴∠ODE=∠OCE=90°,
即OD⊥ED,
∵D在⊙O上,
∴ED与⊙O相切.

(2)∵⊙O半径为3,即OC=3,ED=4,
∴CE=ED=4,
∴OE=
CE2+OC2
=5,
∵E为BC中点,OC=OA,
∴OE为△ACB的中位线,
∴OE=
1
2
AB,
∴AB=10.
答:AB长为10.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网