题目内容
【题目】甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.
(1)分别求出y1,y2与x之间的关系式;
(2)当甲、乙两个商场的收费相同时,所买商品为多少件?
(3)当所买商品为5件时,应选择哪个商场更优惠?请说明理由.
【答案】(1);y2=2250x;
(2)甲、乙两个商场的收费相同时,所买商品为6件;
(3)所买商品为5件时,应选择乙商场更优惠.
【解析】
试题分析:(1)由两家商场的优惠方案分别列式整理即可;
(2)由收费相同,列出方程求解即可;
(3)由函数解析式分别求出x=5时的函数值,即可得解
试题解析:(1)当x=1时,y1=3000;
当x>1时,y1=3000+3000(x﹣1)×(1﹣30%)=2100x+900.
∴;
y2=3000x(1﹣25%)=2250x,
∴y2=2250x;
(2)当甲、乙两个商场的收费相同时,2100x+900=2250x,
解得x=6,
答:甲、乙两个商场的收费相同时,所买商品为6件;
(3)x=5时,y1=2100x+900=2100×5+900=11400,
y2=2250x=2250×5=11250,
∵11400>11250,
∴所买商品为5件时,应选择乙商场更优惠.
【题目】某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增减(辆) | -1 | +3 | -2 | -4 | +7 | -5 | -10 |
(1)生产量最多的一天比生产量最少的一天多生产多少辆?
(2)本周总的生产量是多少辆?
【题目】某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.
球 | 两红 | 一红一白 | 两白 |
礼金券(元) | 18 | 24 | 18 |
(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.
(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.