题目内容
【题目】矩形ABCD的对角线相交于点O,AC= ,CD=1,
(1)尺规作图:作∠ABC的平分线交AD于点E,连结CE;
(2)判断线段BE与CE的关系,并证明你的判断.
【答案】
(1)解:如图所示
(2)解:BE⊥CE且BE=CE,理由如下:
∵矩形ABCD中,
∴∠BAD=∠ADC=∠ABC=90°,AB=CD,AD∥BC.
∴在Rt△ADH中,AC= ,CD=1,
∴ ,
∵BE平分∠ABC,
∴∠ABE=∠EBC=45°,
∵AD∥BC,
∴∠AEB=∠EBC,
∴∠AEB=∠ABE=45°,
∴AB=AE,
∵AB=CD,
∴AE=AB=1,DE=AD﹣AE=1,
∴AE=DE,
在△ABE与△DCE中, ,
∴△DAB≌△DEB(SAS),
∴BE=CE且∠CED=∠AEB=45°.
∴∠BED=180°﹣∠AEB﹣∠CED=90°
∴BE⊥CE且BE=CE.
【解析】(1)根据全等三角形的判定方法作出∠ABC的平分线;(2)根据矩形的性质得到对边平行且相等,四角都等于90°,根据勾股定理求出AD的长,得出△DAB≌△DEB,根据三角形内角和定理,求出∠BED的度数,得到BE⊥CE且BE=CE的结论.
【考点精析】解答此题的关键在于理解矩形的性质的相关知识,掌握矩形的四个角都是直角,矩形的对角线相等.
练习册系列答案
相关题目