题目内容
【题目】如图,已知∠BDC+∠EFC=180°,∠DEF=∠B.
(1)DE与BC是否平行,请说明理由;
(2)D、E、F分别为AB、AC、DC中点,连接BF,若四边形 ADEF=求.
【答案】(1)见解析(2)16
【解析】
(1)由BDC+∠EFC=180°和∠EFC+∠DFE=180°得到∠BDC=∠DFE,根据平行线的判定得AB∥EF,则∠ADE=∠DEF,而∠DEF=∠B,所以∠ADE=∠B,于是可判断DE∥BC.
(2)由E为AC的中点,根据三角形面积公式得到S△ADE=S△CDE=S△ADC,再由F为DC的中点得S△DEF=S△CEF=S△DEC,而S四边形ADFE=6,则S△ADE+S△EDC=6,可计算出S△ADE=4,则S△ADC=8,然后利用D为AB的中点,根据S△ABC=2S△ADC进行计算即可.
证明:∵∠BDC+∠EFC=180°,
而∠EFC+∠DFE=180°,
∴∠BDC=∠DFE,
∴AB∥EF,
∴∠ADE=∠DEF,
∵∠DEF=∠B,
∴∠ADE=∠B,
∴DE∥BC.
(2) 解:∵E为AC的中点,
∴S△ADE=S△CDE=S△ADC,
∵F为DC的中点,
∴S△DEF=S△CEF=S△DEC,
∵S四边形ADFE=6,
∴S△ADE+S△EDC=6,
∴S△ADE=6,
∴S△ADE=4,
∴S△ADC=2×4=8,
∵D为AB的中点,
∴S△ABC=2S△ADC=2×8=16.
【题目】已知某品牌的饮料有大瓶装与小瓶装之分.某超市花了3800元购进一批该品牌的饮料共1000瓶,其中大瓶和小瓶饮料的进价及售价如下表所示:
大瓶 | 小瓶 | |
进价(元/瓶) | 5 | 2 |
售价(元/瓶) | 7 | 3 |
(1)该超市购进大瓶和小瓶饮料各多少瓶?
(2)在大瓶饮料售出200瓶,小瓶饮料售出100瓶后,商家决定将剩下的小瓶饮料的售价降低0.5元销售,并把其中一定数量的小瓶饮料作为赠品,在顾客一次性购买大瓶饮料时,每满2瓶就送1瓶小瓶饮料,送完即止.超市要使这批饮料售完后获得的利润不低于1250元,那么小瓶饮料作为赠品最多只能送出多少瓶?