题目内容
【题目】如图,正方形ABCD(四边相等,四个角都是直角)的边长为4,点P从点A出发,以每秒1个单位长度的速度沿射线AD向点D运动;点Q从点D同时出发,以相同的速度沿射线AD方向向右运动,当点P到达点D时,点Q也停止运动,连接BP,过点P作BP的垂线交过点Q平行于CD的直线l于点E,BE于CD相交于点F,连接PF,设点P运动时间为t(s),
(1)求∠PBE的度数;
(2)当t为何值时,△PQF是以PF为腰的等腰三角形?
(3)试探索在运动过程中△PDF的周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.
【答案】(1)证明见解析(2)t=2s或4s时,△PFQ是以PF为腰的等腰三角形(3)△PDF的周长是定值
【解析】试题分析:(1)如图1中,只要证明△ABP≌△QPE,推出PB=PE即可求解.
(2)如图2中,分两种情形讨论①当AP=PD时,可以推出△PFQ是等腰三角形,此时t=2.
②当点P与点D重合时,PF=CD=AD=DQ,△PFQ是等腰三角形,此时t=4.
(3)如图3中,△PDF的周长是定值.将△BCF绕点B顺时针旋转90°得到△BAG,只要证明△PBG≌△PBF,推出PF=PG,推出PF=PA+AG=PA+CF,由此即可证明.
试题解析:
(1)如图1中,
∵四边形ABCD是正方形,
∴AB=AD,∠A=90°,
∵AP=DQ,
∴AD=PQ=AB,
∵PB⊥PE,
∴∠BPE=90°,
∴∠ABP+∠APB=90°,∠APB+∠EPQ=90°,
∴∠ABP=∠EPQ,
∴△ABP≌△QPE,
∴PB=PE,
∴∠PBE=∠PEB=45°.
(2)如图2中,
①当AP=PD时,
∵AP=DQ,
∴DP=DQ,
∵FD⊥PQ,
∴PF=FQ,
∴△PFQ是等腰三角形,此时t=2.
②当点P与点D重合时,PF=CD=AD=DQ,△PFQ是等腰三角形,此时t=4.
综上所述,t=2s或4s时,△PFQ是以PF为腰的等腰三角形.
(3)如图3中,△PDF的周长是定值.
将△BCF绕点B顺时针旋转90°得到△BAG.
∵∠PBE=45°,∠ABC=90°,
∴∠ABP+∠CBF=∠ABP+∠ABG=45°,
∴∠PBG=∠PBF,
在△PBG和△PBF中,
,
∴△PBG≌△PBF,
∴PF=PG,
∴PF=PA+AG=PA+CF,
∴△PDF的周长=PF+DP+DF=(PA+DP)+(DF+CF)=AD+CD=8.
∴△PDF的周长为定值.