题目内容
【题目】已知:在平面直角坐标系中,抛物线 交x轴于A、B两点,交y轴于点C,且对称轴为x=﹣2,点P(0,t)是y轴上的一个动点.
(1)求抛物线的解析式及顶点D的坐标.
(2)如图1,当0≤t≤4时,设△PAD的面积为S,求出S与t之间的函数关系式;S是否有最小值?如果有,求出S的最小值和此时t的值.
(3)如图2,当点P运动到使∠PDA=90°时,Rt△ADP与Rt△AOC是否相似?若相似,求出点P的坐标;若不相似,说明理由.
【答案】
(1)
解:对称轴为x=﹣ =﹣2,
解得b=﹣1,
所以,抛物线的解析式为y=﹣ x2﹣x+3,
∵y=﹣ x2﹣x+3=﹣ (x+2)2+4,
∴顶点D的坐标为(﹣2,4)
(2)
解:令y=0,则﹣ x2﹣x+3=0,
整理得,x2+4x﹣12=0,
解得x1=﹣6,x2=2,
∴点A(﹣6,0),B(2,0),
如图1,过点D作DE⊥y轴于E,
∵0≤t≤4,
∴△PAD的面积为S=S梯形AOED﹣S△AOP﹣S△PDE,
= ×(2+6)×4﹣ ×6t﹣ ×2×(4﹣t),
=﹣2t+12,
∵k=﹣2<0,
∴S随t的增大而减小,
∴t=4时,S有最小值,最小值为﹣2×4+12=4
(3)
解:如图2,过点D作DF⊥x轴于F,
∵A(﹣6,0),D(﹣2,4),
∴AF=﹣2﹣(﹣6)=4,
∴AF=DF,
∴△ADF是等腰直角三角形,
∴∠ADF=45°,
由二次函数对称性,∠BDF=∠ADF=45°,
∴∠PDA=90°时点P为BD与y轴的交点,
∵OF=OB=2,
∴PO为△BDF的中位线,
∴OP= DF=2,
∴点P的坐标为(0,2),
由勾股定理得,DP= =2 ,
AD= AF=4 ,
∴ = =2,
令x=0,则y=3,
∴点C的坐标为(0,3),OC=3,
∴ = =2,
∴ = ,
又∵∠PDA=90°,∠COA=90°,
∴Rt△ADP∽Rt△AOC
【解析】(1)根据二次函数的对称轴列式求出b的值,即可得到抛物线解析式,然后整理成顶点式形式,再写出顶点坐标即可;(2)令y=0解关于x的一元二次方程求出点A、B的坐标,过点D作DE⊥y轴于E,然后根据△PAD的面积为S=S梯形AOCE﹣S△AOP﹣S△PDE , 列式整理,然后利用一次函数的增减性确定出最小值以及t值;(3)过点D作DF⊥x轴于F,根据点A、D的坐标判断出△ADF是等腰直角三角形,然后求出∠ADF=45°,根据二次函数的对称性可得∠BDF=∠ADF=45°,从而求出∠PDA=90°时点P为BD与y轴的交点,然后求出点P的坐标,再利用勾股定理列式求出AD、PD,再根据两边对应成比例夹角相等两三角形相似判断即可.