题目内容
【题目】为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).
(1)求a的值,并把频数直方图补充完整;
(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.
【答案】(1)a=20,补图见解析;(2)300人
【解析】
(1)利用总人数减去各个组别的人数即可求出a的值,然后补全频数直方图即可;
(2)利用500乘跳高成绩在1.29m(含1.29m)以上的人数的频率即可得出结论.
解:(1)a=50-8-12-10=20,
;
(2)该年级学生跳高成绩在1.29m(含1.29m)以上的人数是:500×=300(人)
答:该年级学生跳高成绩在1.29m(含1.29m)以上有300人.
【题目】已知二次函数.
(1)该二次函数的顶点坐标为__________;
(2)该函数的图象与轴的交点坐标为__________;
(3)用五点法画函数图象
… | … | ||||||
… | … |
(4)当时,则的取值范围是__________;
(5)将该抛物线绕顶点旋转180°,所得函数的解析式为__________;
(6)抛物线与轴有且仅有一个交点,则__________.
【题目】为了解某校七年级学生作业时间情况,随机抽取了该校七年级部分学生进行调查,并根据调查结果绘制了如下的统计图.
作业时间分组表(单位:小时)
别 | 作业时间 | 人数 | 频率 |
A | 1≤x≤1.5 | 5 | 0.1 |
B | 1.5≤x≤2 | 20 | b |
C | 2≤x≤2.5 | m | n |
D | x≥2.5 | 7 | 0.14 |
小计 | a | 1 |
(1)统计图中的a=______;b=______;m=______;n=______.
(2)求出C组的扇形的圆心角度数.
(3)如果该校七年级学生共400名,试估计这400名生作业时间在B组和C组的人数共有多少人?