题目内容
【题目】如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,与AB交于点N,连接OM,ON,MN.下列四个结论:①△CNB≌△DMC;②OM=ON;③△OMN∽△OAD;④AN2+CM2=MN2,其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
【答案】D
【解析】
据正方形的性质,依次判定△CNB≌△DMC,△OCM≌△OBN,根据全等三角形的性质以及勾股定理进行计算即可得出结论.
∵正方形ABCD中,CD=BC,∠BCD=90°,
∴∠BCN+∠DCN=90°,
又∵CN⊥DM,
∴∠CDM+∠DCN=90°,
∴∠BCN=∠CDM,
又∵∠CBN=∠DCM=90°,
∴△CNB≌△DMC(ASA),故①正确;
∵△CNB≌△DMC,可得CM=BN,
又∵∠OCM=∠OBN=45°,OC=OB,
∴△OCM≌△OBN(SAS),
∴OM=ON故②正确,
∵△OCM≌△OBN,
∴∠COM=∠BON,
∴∠MON=∠COB=90°,
∴△MON是等腰直角三角形,
∵△AOD也是等腰直角三角形,
∴△OMN∽△OAD,故③正确,
∵AB=BC,CM=BN,
∴BM=AN,
又∵Rt△BMN中,BM2+BN2=MN2,
∴AN2+CM2=MN2,
故④正确;
∴本题正确的结论有:①②③④,
故选:D.
练习册系列答案
相关题目