题目内容
【题目】已知:如图,Rt△ABC中,∠ABC=90°,AD平分∠BAC交BC于D.
(1)用尺规画圆O,使圆O过A、D两点,且圆心O在边AC上.(保留作图痕迹,不写作法)
(2)求证:BC与圆O相切;
(3)设圆O交AB于点E,若AE=2,CD=2BD.求线段BE的长和弧DE的长.
【答案】
(1)解:⊙O即为所求:
(2)解:连接OD,
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠BAC,
∴∠BAD=∠OAD,
∴∠BAD=∠ODA,
∴OD∥AB,
∴∠ODC=∠ABC=90°,
∵OD是半径,
∴BC与⊙O相切;
(3)连接OE,过点O作OF⊥AB于点F,
∵AE=2,
∴由垂径定理定理可知:AF=1,
∵CD=2BD,
∴ = , = ,
∵OF∥BC,
∴△AOF∽△ACB,
∴ ,
∵OF=BD,
∴ = ,
∴ = ,
∴AB=3,
∴BE=AB﹣AE=1,
∵OD∥AB,
∴△OCD∽△ACB,
∴ = ,
∴OD=2,
∴OA=OD=AE,
∴△AOE是等边三角形,
∴∠AEO=60°
∵OD∥AB,
∴∠EOD=60°,
∴ 的长度是: = .
【解析】(1)要使⊙O过A、D两点,即OA=OD,所以点O在线段AD的垂直平分线上,且圆心O在AC边上,所以作出AD的垂直平分线与AC的交点即为点O;(2)要证明BC与⊙O相切,连接OD后,只需要证明∠ODC=90°即可;(3)由于AE是⊙O的弦,可过点O作OF⊥AE于点F,然后利用垂径定理可知AF=1,利用△AOF∽△ACB求出AB的值,所以BE=AB﹣AE.再利用△OCD∽△ACB,求出半径OD,可知△AOE是等边三角形,所以 所对的圆心角为60°,利用弧长公式即可求出 的长度.
【题目】如图①,把∠α=60°的一个单独的菱形称作一个基本图形,将此基本图形不断的复制并平移,使得下一个菱形的一个顶点与前一个菱形的中线重合,这样得到图②,图③,…
(1)观察以上图形并完成下表:
图形名称 | 基本图形的个数 | 菱形的个数 |
图① | 1 | 1 |
图② | 2 | 3 |
图③ | 3 | 7 |
图④ | 4 | |
… | … | … |
猜想:在图(n)中,菱形的个数为(用含有n(n≥3)的代数式表示);
(2)如图,将图(n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1 , 1),则x1=;第2017个基本图形的中心O2017的坐标为 .