题目内容
【题目】如图,在平面直角坐标系xOy中,已知点A坐标(2,3),过点A作AH⊥x轴,垂足为点H,AH交反比例函数在第一象限的图象于点B,且满足=2.
(1)求该反比例函数的解析式;
(2)点C在x正半轴上,点D在该反比例函数的图象上,且四边形ABCD是平行四边形,求点D坐标.
【答案】(1)y=;(2)点D坐标(1,2)
【解析】
(1)先求出点B坐标,利用待定系数法可求反比例函数解析式;
(2)利用平行四边形的性质可得AB∥CD,AB=CD=2,可求点D坐标.
解:(1)∵点A坐标(2,3),
∴AH=3,
∵=2,
∴BH=1,AB=2,
∴点B(2,1),
设反比例函数的解析式为y=(k≠0),
∵点B在反比例函数的图象上,
∴k=2×1=2,
∴反比例函数的解析式为y=;
(2)∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD=2,
∵AB⊥x轴,
∴CD⊥x轴,
∴点D纵坐标2,
∴点D坐标(1,2).
练习册系列答案
相关题目