题目内容

【题目】如图,点AB和线段MN都在数轴上,点AMNB对应的数字分别为﹣10211.线段MN沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.

1)用含有t的代数式表示AM的长为  

2)当t=  秒时,AM+BN=11

3)若点AB与线段MN同时移动,点A以每秒2个单位速度向数轴的正方向移动,点B以每秒1个单位的速度向数轴的负方向移动,在移动过程,AMBN可能相等吗?若相等,请求出t的值,若不相等,请说明理由.

【答案】(1) ;(2) .

【解析】分析:(1)根据点M开始表示的数结合其运动速度和时间,即可得出运动后点M的表示的数,再依据点A表示的数为-1即可得出结论;(2)分别找出AM、BN,根据AM+BN=11即可列出关于t的含绝对值符号的一元一次方程,解方程即可得出结论;

(3)假设能够相等,找出AM、BN,根据AM=BN即可列出关于t的含绝对值符号的一元一次方程,解方程即可得出结论.

本题解析:(1)∵点A、M、N对应的数字分别为﹣1、0、2,线段MN沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒,

∴移动后M表示的数为t,N表示的数为t+2,

∴AM=t﹣(﹣1)=t+1.

(2)由(1)可知:BN=|11﹣(t+2)|=|9﹣t|,

∵AM+BN=11,

∴t+1+|9﹣t|=11,

解得:

(3)假设能相等 ,则点A表示的数为2t﹣1,M表示的数为t,N表示的数为t+2,B表示的数为11﹣t,

∴AM=|2t﹣1﹣t|=|t﹣1|,BN=|t+2﹣(11﹣t)|=|2t﹣9|,

∵AM=BN,

∴|t﹣1|=|2t﹣9|,

故在运动的过程中AM和BN能相等,此时运动的时间为 秒和8秒.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网