题目内容
【题目】如图,在平面直角坐标系中, ⊙O的半径是1,直线AB与x轴交于点P(x,0),且与x轴的正半轴夹角为45°,若直线AB与⊙O有公共点,则x值的范围是( )
A. -1≤x≤1 B. -≤x≤ C. -<x< D. 0≤x≤
【答案】B
【解析】
设直线AB的解析式为y=x+b,当直线与圆相切时切点为C,连接OC,则OC=1,由于直线AB与x轴正方向夹角为45°,所以△AOC是等腰直角三角形,故OC=PC=1再根据勾股定理求出OA的长即可.
∵直线AB与x轴正方向夹角为45°,
∴设直线AB的解析式为y=x+b,切点为C,连接OC,
∵⊙O的半径为1,
∴△AOC是等腰直角三角形,
∴OC=PC=1,
∴OA==,
∴P(,0),
同理可得,当直线与x轴负半轴相交时,P(,0),
∴-≤x≤.
故选:B
练习册系列答案
相关题目