题目内容
【题目】如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为31°,塔底B的仰角为26.6°.已知塔高BC=40米,塔所在的山高OB=240米,OA=300米,图中的点O、B、C、A、P在同一平面内.求:
(1)P到OC的距离.
(2)山坡的坡度tanα.
(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin31°≈0.52,tan31°≈0.60)
【答案】
(1)
解:如图,过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形.
在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,
∴BD=PDtan∠BPD=PDtan26.6°;
在Rt△CPD中,∵∠CDP=90°,∠CPD=31°,
∴CD=PDtan∠CPD=PDtan31°;
∵CD﹣BD=BC,
∴PDtan31°﹣PDtan26.6°=40,
∴0.60PD﹣0.50PD=40,
解得PD=400(米),
∴P到OC的距离为400米
(2)
解:在Rt△PBD中,BD=PDtan26.6°≈400×0.50=200(米),
∵OB=240米,
∴PE=OD=OB﹣BD=40米,
∵OE=PD=400米,
∴AE=OE﹣OA=400﹣300=100(米),
∴tanα= =
=0.4,
∴坡度为0.4
【解析】(1)过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形,先解Rt△PBD,得出BD=PDtan26.6°;解Rt△CPD,得出CD=PDtan31°;再根据CD﹣BD=BC,列出方程,求出PD=400即可求得点P到OC的距离;(2)利用求得的线段PD的长求出PE=40,AE=100,然后在△APE中利用三角函数的定义即可求解.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】如图是生活中常见的月历的示意图,请结合图示回答下列问题.
一 | 二 | 三 | 四 | 五 | 六 | 日 |
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
(1)如图是另一个月的月历,a表示该月中某一天,b,c,d是该月中其他3天,b,c,d分别与a的关系:b=________;c=________;d=________(用含a的代数式填空).
(2)用一个长方形框圈出月历中的三个数(如 图中的阴影),若这三个数之和等于51,则这三个数分别是多少?
(3)这样圈出的三个数的和可能是64吗?为什么?