题目内容

如图,在直角坐标系中,O为原点,A(4,12)为双曲线y=
k
x
(x>0)上的一点.
(1)求k的值;
(2)过双曲线上的点P作PB⊥x轴于B,连接OP,若Rt△OPB两直角边的比值为
1
4
,试求点P的坐标;
(3)分别过双曲线上的两点P1、P2,作P1B1⊥x轴于B1,P2B2⊥x轴于B2,连接OP1、OP2.设Rt△OP1B1、Rt△OP2B2的周长分别为l1、l2,内切圆的半径分别为r1、r2,若
l1
l2
=2
,试求
r1
r2
的值.
(1)将A(4,12)代入双曲线y=
k
x
中,得12=
k
4
,则k=48;(3分)

(2)由(1)得双曲线解析式为y=
48
x
,(4分)
设P(m,n),∴n=
48
m
,即mn=48,(5分)
OB
PB
=
1
4
时,即
m
n
=
1
4
,可设m=z,n=4z,
∴z•4z=48,解得z=2
3

m=2
3
n=8
3

∴P(2
3
8
3
),(7分)
PB
OB
=
1
4
时,同理可求得P(8
3
2
3
);(8分)

(3)在Rt△OP1B1中,设OB1=a1,P1B1=b1,OP1=c1
则P1(a1,b1),由(2)得a1b1=48,
在Rt△OP2B2中,设OB2=a2,P2B2=b2,OP2=c2
则P2(a2,b2),由(2)得a2b2=48,
1
2
(a1+b1+c1)•r1=
1
2
a1b1=24
1
2
(a2+b2+c2)•r2=
1
2
a2b2=24
(10分)
∴(a1+b1+c1)•r1=(a2+b2+c2)•r2(11分)
即l1•r1=l2•r2,故
l1
l2
=
r2
r1
(12分)
又∵
l1
l2
=2,∴
r2
r1
=2,即得:
r1
r2
=
1
2
.(13分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网