题目内容
【题目】如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.
⑴求证:四边形BEDF为菱形;
⑵如果∠A=100°,∠C=30°,求∠BDE的度数.
【答案】(1)证明见解析(2)25°
【解析】
(1)首先证明四边形DEBF是平行四边形,根据平行线的性质得到∠EDB=∠DBF,根据角平分线的性质得到∠ABD=∠DBF,等量代换得到∠ABD=∠EDB,得到DE=BE,即可证明四边形BEDF为菱形;
⑵根据三角形的内角和求出的度数,根据角平分线的性质得到的度数,根据平行线的性质即可求解.
(1)∵DE∥BC,DF∥AB
∴四边形DEBF是平行四边形
∵DE∥BC
∴∠EDB=∠DBF
∵BD平分∠ABC
∴∠ABD=∠DBF=∠ABC
∴∠ABD=∠EDB
∴DE=BE
∴四边形BEDF为菱形;
(2) ∠A=100°,∠C=30°,
∵BD平分∠ABC
∴∠ABD=∠DBF=∠ABC
∵DE∥BC
∴∠EDB=∠DBF= 25°.
【题目】有甲、乙两家草莓采摘园,草莓的销售价格相间,在生长旺季,两家均排出优惠方案.甲园的优惠方案是:采摘的草莓不超过时,按原价销售;若超过超过部分折优惠;乙园的优惠方案是:游客进园需购买元门票.采摘的草莓直接按降价出售.已知在甲园、乙园采摘草莓时,所需费用相同.
在乙采摘园所需费用( 元)与草梅采摘量(千克)满足一次函数关系,如下表:
数量/千克 | ··· | ||||
费用元 | ··· |
(1)求与的函数关系式(不必写出的范围);
(2)求两个采摘园的草莓在生长旺季前的销售价格.并求在甲采摘园所需费用(元)与草莓采摘量(千克)的函数关系式;
(3)若嘉琪准备花费元去采摘草莓,去哪个园采摘,可以得到更多数量的草莓? 说明理由.
【题目】有甲、乙两家草莓采摘园,草莓的销售价格相间,在生长旺季,两家均排出优惠方案.甲园的优惠方案是:采摘的草莓不超过时,按原价销售;若超过超过部分折优惠;乙园的优惠方案是:游客进园需购买元门票.采摘的草莓直接按降价出售.已知在甲园、乙园采摘草莓时,所需费用相同.
在乙采摘园所需费用( 元)与草梅采摘量(千克)满足一次函数关系,如下表:
数量/千克 | ··· | ||||
费用元 | ··· |
(1)求与的函数关系式(不必写出的范围);
(2)求两个采摘园的草莓在生长旺季前的销售价格.并求在甲采摘园所需费用(元)与草莓采摘量(千克)的函数关系式;
(3)若嘉琪准备花费元去采摘草莓,去哪个园采摘,可以得到更多数量的草莓? 说明理由.