题目内容

【题目】在下列条件中:①∠A +∠B=∠C;②∠A:∠B:∠C=l:2:3;③∠A=90°-∠B;④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有( )

A. 1个; B. 2个; C. 3个; D. 4个;

【答案】D

【解析】①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,所以△ABC是直角三角形;

②因为∠A:∠B:∠C=1:2:3,设∠A=x,则x+2x+3x=180,x=30°,∠C=30°×3=90°,所以△ABC是直角三角形;

③因为∠A=90°∠B,所以∠A+∠B=90°,则∠C=180°90°=90°,所以△ABC是直角三角形;

④因为∠A=∠B∠C,所以∠C+∠A=∠B,又∠A+∠B+∠C=180°,2∠B=180°,解得∠B=90°,△ABC是直角三角形;

能确定△ABC是直角三角形的有①②③④共4个。

故选:D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网