题目内容
【题目】定义:对于给定的一次函数y=ax+b(a≠0),把形如的函数称为一次函数y=ax+b(a≠0)的衍生函数.已知矩形ABCD的顶点坐标分别为A(1,0),B(1,2),C(-3,2),D(-3,0).
(1)已知函数y=2x+l.
①若点P(-1,m)在这个一次函数的衍生函数图像上,则m= .
②这个一次函数的衍生函数图像与矩形ABCD的边的交点坐标分别为 .
(2)当函数y=kx-3(k>0)的衍生函数的图象与矩形ABCD有2个交点时,k的取值范围是 .
【答案】(1)①3,②(,2)或(,,0);(2)1<k<3;
【解析】
(1)①x=-1<0,则m=-2×(-1)+1=3,即可求解;②一次函数的衍生函数图象与矩形ABCD的边的交点位置在BC和AD上,即可求解;
(2)当直线在位置①时,函数和矩形有1个交点,当直线在位置②时,函数和图象有3个交点,在图①②之间的位置,直线与矩形有2个交点,即可求解.
解:(1)①x=-1<0,则m=-2×(-1)+1=3,
故答案为:3;
②一次函数的衍生函数图象与矩形ABCD的边的交点位置在BC和AD上,
当y=2时,2x+1=2,解得:x=,
当y=0时,2x+1=0,解得:x=,
故答案为:(,2)或(,,0);
(2)函数可以表示为:y=|k|x-3,
如图所示当直线在位置①时,函数和矩形有1个交点,
当x=3时,y=|k|x-3=3|k|-3=0,k=±1,
k>0,取k=1
当直线在位置②时,函数和图象有3个交点,
同理k=3,
故在图①②之间的位置,直线与矩形有2个交点,
即:1<k<3.
【题目】如图,在平面直角坐标系中,点A的坐标为(﹣1,0),点B的坐标为(2,0),点P为线段AB外一动点且PA=1,以PB为边作等边△PBM,则当线段AM的长取到最大值时,点P的横坐标为_____.
【题目】为了解学生每天的睡眠情况,某初中学校从全校 800 名学生中随机抽取了 40 名学生,调查了他们平均每天的睡眠时间(单位: h) ,统计结果如下:
9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,
7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.
在对这些数据整理后,绘制了如下的统计图表:
睡眠时间分组统计表 睡眠时间分布情况
组别 | 睡眠时间分组 | 人数(频数) |
1 | 7≤t<8 | m |
2 | 8≤t<9 | 11 |
3 | 9≤t<10 | n |
4 | 10≤t<11 | 4 |
请根据以上信息,解答下列问题:
(1) m = , n = , a = , b = ;
(2)抽取的这 40 名学生平均每天睡眠时间的中位数落在 组(填组别) ;
(3)如果按照学校要求,学生平均每天的睡眠时间应不少于 9 h,请估计该校学生中睡眠时间符合要求的人数.