题目内容

【题目】如图 1,二次函数的图像过点 A (3,0),B (0,4)两点,动点 P 从 A 出发,在线段 AB 上沿 A B 的方向以每秒 2 个单位长度的速度运动,过点P PDy 于点 D ,交抛物线于点 C .设运动时间为 t (秒).

1)求二次函数的表达式;

(2)连接 BC ,当t时,求BCP的面积;

(3)如图 2,动点 P 从 A 出发时,动点 Q 同时从 O 出发,在线段 OA 上沿 OA 的方向以 1个单位长度的速度运动,当点 P 与 B 重合时,P 、 Q 两点同时停止运动,连接 DQ 、 PQ ,将DPQ沿直线 PC 折叠到 DPE .在运动过程中,设 DPE OAB重合部分的面积为 S ,直接写出 S 与 t 的函数关系式及 t 的取值范围.

【答案】(1);(2)4;(3)

【解析】

试题分析:(1)直接将A、B两点的坐标代入列方程组解出即可;

(2)如图1,要想求△BCP的面积,必须求对应的底和高,即PC和BD;先求OD,再求BD,PC是利用点P和点C的横坐标求出,要注意符号;

(3)分两种情况讨论:①△DPE完全在△OAB中时,即当时,如图2所示,重合部分的面积为S就是△DPE的面积;②△DPE有一部分在△OAB中时,当时,如图4所示,△PDN就是重合部分的面积S.

试题解析:(1)把A(3,0),B(0,4)代入中得:

,解得:解析式为:

(2)如图1,当时,AP=2t,∵PC∥x轴,∴,∴,∴OD===,当y=时,=解得:,∴C(﹣1,),由,则PD=2,∴S△BCP=×PC×BD==4;

(3)分两种情况讨论:如图3,当点E在AB上时,由(2)得OD=QM=ME=,∴EQ=,由折叠得:EQ⊥PD,则EQ∥y轴,∴,∴t=,同理得:PD=,∴当时,S=S△PDQ=×PD×MQ=

时,如图4,P′D′=,点Q与点E关于直线P′C′对称,则Q(t,0)、E(t,),∵AB的解析式为:,D′E的解析式为:,则交点N(),∴S=S△P′D′N=×P′D′×FN=,∴

综上所述:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网