题目内容
【题目】某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.
(1)求每吨水的政府补贴优惠价和市场价分别是多少?
(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;
(3)小明家5月份用水26吨,则他家应交水费多少元?
【答案】(1)每吨水的政府补贴优惠价2元,市场调节价为3.5元;(2);(3)69.
【解析】
试题分析:(1)设每吨水的政府补贴优惠价为m元,市场调节价为n元,根据题意列出方程组,求解此方程组即可;
(2)根据用水量分别求出在两个不同的范围内y与x之间的函数关系,注意自变量的取值范围;
(3)根据小英家5月份用水26吨,判断其在哪个范围内,代入相应的函数关系式求值即可.
试题解析:(1)设每吨水的政府补贴优惠价为m元,市场调节价为n元.,解得:.
答:每吨水的政府补贴优惠价2元,市场调节价为3.5元.
(2)当0≤x≤14时,y=2x;
当x>14时,y=14×2+(x﹣14)×3.5=3.5x﹣21,故所求函数关系式为:;
(3)∵26>14,∴小英家5月份水费为3.5×26﹣21=69元.
答:小英家5月份水费69元.
练习册系列答案
相关题目