题目内容

【题目】把多块大小不同的30°直角三角板如图所示,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与y轴重合且点A的坐标为(0,1),∠ABO=30°;第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交y轴于点B1;第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交x轴于点B2;第四块三角板的斜边B2B3与第三块三角板的斜边B1B2C垂直且交y轴于点B3;…按此规律继续下去,则点B2017的坐标为

【答案】(0,﹣
【解析】解:由题意可得,
OB=OAtan60°=1× =
OB1=OBtan60°= =( 2=3,
OB2=OB1tan60°=( 3

∵2017÷4=506…1,
∴点B2017的坐标为(0,﹣ ),
所以答案是:(0,﹣ ).
【考点精析】认真审题,首先需要了解数与式的规律(先从图形上寻找规律,然后验证规律,应用规律,即数形结合寻找规律).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网