题目内容
【题目】探索:小明和小亮在研究一个数学问题:已知AB∥CD,AB和CD都不经过点P,探索∠P与∠A,∠C的数量关系.
发现:在图1中,小明和小亮都发现:∠APC=∠A+∠C;
小明是这样证明的:过点P作PQ∥AB
∴∠APQ=∠A( )
∵PQ∥AB,AB∥CD.
∴PQ∥CD( )
∴∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
小亮是这样证明的:过点作PQ∥AB∥CD.
∴∠APQ=∠A,∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
请在上面证明过程的过程的横线上,填写依据;两人的证明过程中,完全正确的是 .
应用:
在图2中,若∠A=120°,∠C=140°,则∠P的度数为 ;
在图3中,若∠A=30°,∠C=70°,则∠P的度数为 ;
拓展:
在图4中,探索∠P与∠A,∠C的数量关系,并说明理由.
【答案】两直线平行,内错角相等;平行于同一直线的两直线平行;小明的证法;100°;40°;
∠APC=∠A﹣∠C
【解析】
试题分析:过点P作AB的平行线,用相似的证明方法运用平行线的性质进行证明即可
试题解析:如图1,过点P作PQ∥AB, ∴∠APQ=∠A(两直线平行,内错角相等)
∵PQ∥AB,AB∥CD. ∴PQ∥CD(平行于同一直线的两直线平行) ∴∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C 即∠APC=∠A+∠C,
故两人的证明过程中,完全正确的是小明的证法;
如图2,过点P作PE∥AB, ∴∠APE+∠A=180°,∠A=120°,∴∠APE=60°,
∵PE∥AB,AB∥CD. ∴PE∥CD(平行于同一直线的两直线平行)
∴∠CPE+∠C=180°,∠C=140°,∴∠CPE=40°, ∴∠APC=∠APE+∠CPE=100°;
如图3,过点P作PF∥AB, ∴∠APF=∠A, ∵PF∥AB,AB∥CD. ∴PF∥CD,
∴∠CPF=∠C ∴∠CPF﹣∠APF=∠C﹣∠A 即∠APC=∠C﹣∠A=40°;
如图4,过点P作PG∥AB, ∴∠APG+∠A=180°,∴∠APG=180°﹣∠A
∵PG∥AB,AB∥CD, ∴PG∥CD,(平行于同一直线的两直线平行)
∴∠CPG+∠C=180°,∴∠CPG=180°﹣∠C ∴∠APC=∠CPG﹣∠APG=∠A﹣∠C.