题目内容
【题目】四边形ABCD是边长为4的正方形,点E在边AD所在的直线上,连接CE,以CE为边,作正方形CEFG(点D,点F在直线CE的同侧),连接BF,
图1 图2
(1)如图1,当点E与点A重合时,则_____;
(2)如图2,当点E在线段AD上时,,
①求点F到AD的距离;
②求BF的长.
【答案】(1);(2)①点F到AD的距离为3;②BF=.
【解析】
(1)根据勾股定理依次求出AC、CF、BF长即可;
(2)①过点F作,由正方形的性质可证,根据全等三角形的性质可得FH的长;②延长FH交BC的延长线于点K,求出BK、FK的长,根据勾股定理可得解.
解:(1) 当点E与点A重合时,点C、D、F在一条直线,连接CF,在中,,同理可得
(2)①过点F作交AD的延长线于点H,如图所示
∵四边形CEFG是正方形,
∴,
∴,
又∵四边形ABCD是正方形,
∴
∴,
∴
又∵,
∴
∴
∵,,
∴,
∴,即点F到AD的距离为3.
②延长FH交BC的延长线于点K,如图所示
∴,
∴四边形CDHK为矩形,
∴,
∴,
∵,
∴,
∴,
∴,
在中,
练习册系列答案
相关题目