题目内容
【题目】2017年5月31日,昌平区举办了首届初二年级学生“数学古文化阅读展示”活动,为表彰在本次活动中表现优秀的学生,老师决定在6月1日购买笔袋或彩色铅笔作为奖品. 已知1个笔袋、2筒彩色铅笔原价共需44元;2个笔袋、3筒彩色铅笔原价共需73元.
(1)每个笔袋、每筒彩色铅笔原价各多少元?
(2)时逢“儿童节”,商店举行“优惠促销”活动,具体办法如下:笔袋“九折”优惠;彩色铅笔不超过10筒不优惠,超出10筒的部分“八折”优惠. 若买x个笔袋需要y1元,买x筒彩色铅笔需要y2元. 请用含x的代数式表示y1、y2;
(3)若在(2)的条件下购买同一种奖品95件,请你分析买哪种奖品省钱.
【答案】(1)每个笔袋原价14元,每筒彩色铅笔原价15元. (2)y1=12.6x. 当不超过10筒时:y2=15x;当超过10筒时:y2=12x+30(3)买彩色铅笔省钱
【解析】试题分析:(1)设每个笔袋原价x元,每筒彩色铅笔原价y元,根据“1个笔袋、2筒彩色铅笔原价共需44元;2个笔袋、3筒彩色铅笔原价共需73元”列出方程组求解即可;(2)根据题意直接用含x的代数式表示y1、y2;(3)把95分别代入(2)中的关系式,比较大小即可.
试题解析:
(1)设每个笔袋原价x元,每筒彩色铅笔原价y元,根据题意,得:
解得:
所以每个笔袋原价14元,每筒彩色铅笔原价15元.
(2)y1=14×0.9x=12.6x.
当不超过10筒时:y2=15x;
当超过10筒时:y2=12x+30.
(3)方法1:
∵95>10,
∴将95分别代入y1=12.6x和y2=12x+30中,得y1> y2.
∴买彩色铅笔省钱.
方法2:
当y1<y2时,有12.6x<12x+30,解得x<50,因此当购买同一种奖品的数量少于50件时,买笔袋省钱.
当y1=y2时,有12.6x=12x+30,解得x=50,因此当购买同一种奖品的数量为50件时,两者费用一样.
当y1>y2时,有12.6x>12x+30,解得x>50,因此当购买同一种奖品的数量大于50件时,买彩色铅笔省钱.
∵奖品的数量为95件,95>50,
∴买彩色铅笔省钱.