题目内容
【题目】甲,乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中其中一人因故障停止加工几分钟后又继续按原速加工,直到他们完成任务,如图表示甲比乙多加工的零件数量(个)与加工时间(分)之间的函数关系,观察图象解决下列问题:
(1)点B的坐标是________,B点表示的实际意义是___________ _____;
(2)求线段BC对应的函数关系式和D点坐标;
(3)乙在加工的过程中,多少分钟时比甲少加工100个零件?
(4)为了使乙能与甲同时完成任务,现让丙帮乙加工,直到完成.丙每分钟能加工3个零件,并把丙加工的零件数记在乙的名下,问丙应在第多少分钟时开始帮助乙?并在图中用虚线画出丙帮助后y与x之间的函数关系的图象.
【答案】(1)B(15,0),甲乙两人工作15分钟时,加工零件的数量相同
(2)y=2x-30,D(150,0)(3)65分钟或125分钟(4)第45分钟
【解析】试题分析:(1)观察图象即可得出点B的坐标,然后根据纵坐标的意义可知此时两人加工的零件数量相同;
(2)利用待定系数法即可得BC对应的函数关系式,根据图象可知105分钟时甲完成任务,甲实际用了100分钟完成任务,从而得到甲的速度,继而知道乙的速度,从而得出点D坐标;
(3)求出CD段的解析式,分别所y=100代入BC、CD段解析式即可得;
(4)设丙应该在x分钟时加入,根据等量关系:乙x分钟加工的数量+乙、丙(105-x)分钟加工的数量=600,解方程即可得,然后补全图象即可.
试题解析:(1)由图象可知B(15,0),根据纵轴表示甲比乙多加工的零件数量可知此时甲、乙加工的零件数量相同,
故答案为:(15,0),甲乙两人工作15分钟时,加工零件的数量相同;
(2)设直线BC的解析式为:y=kx+b,由题意则有
,解得: ,所以BC段的函数关系式为:y=2x-30,
由图象可知105分钟时甲完成了任务,甲中间休息了5分钟,105-5=100,
600÷100=6,6-2=4,600÷4=150,所以D(150,0);
(3)把y=100代入y=2x-30,得:100=2x-30,解得:x=65,
设直线CD的解析式为:y=ax+e,由题意则有
,解得: ,所以BC的函数关系式为:y=-4x+600,
当y=100时,有100=-4x+600,解得:x=125,
所以乙在加工的过程中,65或125分钟时比甲少加工100个零件;
(4)设x分钟时丙加入,则有:4x+(4+3)(105-x)=600,解得:x=45,
即:丙在45分钟时开始帮助乙,
图象如图所示: