题目内容
【题目】图1,图2分别是一滑雪运动员在滑雪过程中某一时刻的实物图与示意图,已知运动员的小腿与斜坡垂直,大腿与斜坡平行,且三点共线,若雪仗长为,,,求此刻运动员头部到斜坡的高度(精确到)(参考数据:)
【答案】1.3m
【解析】
由三点共线,连接GE,根据ED⊥AB,EF∥AB,求出∠GEF=∠EDM=90°,利用锐角三角函数求出GE,根据直角三角形30°角所对的直角边等于斜边的一半求出DE,即可得到答案.
三点共线,连接GE,
∵ED⊥AB,EF∥AB,
∴∠GEF=∠EDM=90°,
在Rt△GEF中,∠GFE=62°,,
∴m,
在Rt△DEM中,∠EMD=30°,EM=1m,
∴ED=0.5m,
∴h=GE+ED=0.75+0.5m,
答:此刻运动员头部到斜坡的高度约为1.3m.
练习册系列答案
相关题目
【题目】小颖在完成一项“社会调查”作业时,需要调查城市送餐人员的收入情况,他了解到劳务公司为了鼓励送餐员的工作积极性,实行“月总收入基本工资(固定)送餐单数奖励”的方法计算薪资,调查中获得如下信息:
送餐员 | 小李 | 小杨 |
月送餐单数/单 | 292 | 273 |
月总收入/元 | 3384 | 3346 |
送餐每单奖励元,送餐员月基本工资为元;
(1)求a、b的值;
(2)若月送餐单数超过300单时,超过部分每单的奖金增加1元.假设月送餐单数为单,月总收入为元,请写出与的函数关系式,若送餐员小李计划月收入不低于5200元,那么他每月至少要送多少单?