题目内容
【题目】问题背景:
如图①,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC、CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.
(1)小明同学探究此问题的方法是,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;
(2)探索延伸:
如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF= ∠BAD,上述结论是否仍然成立,请说明理由;
(3)实际应用:
如图③,在某次军事演习中,舰艇甲在指挥中心O北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,当∠EOF=70°时,两舰艇之间的距离是海里.
(4)能力提高:
如图④,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°.若BM=1,CN=3,则MN的长为 .
【答案】
(1)EF=BE+DF
(2)
解:结论EF=BE+DF仍然成立;
理由:延长FD到点G.使DG=BE.连结AG,如图②,
在△ABE和△ADG中, ,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF= ∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中, ,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
(3)280
(4)
【解析】解:(1.)EF=BE+DF,证明如下:
在△ABE和△ADG中, ,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF= ∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中, ,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
所以答案是 EF=BE+DF.
(3.)如图③,连接EF,延长AE、BF相交于点C,
∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,
∴∠EOF= ∠AOB,
又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,
∴符合探索延伸中的条件,
∴结论EF=AE+BF成立,
即EF=2×(60+80)=280海里.
答:此时两舰艇之间的距离是280海里;
所以答案是:280;
(4.)如图4,
将△ABM绕点A逆时针旋转得到△ACD,
∴△ABM≌△ACD,
∴∠AMB=∠ADC,∠BAM=∠CAM,AM=AD,BM=CD=1,
∵∠AMB+∠AMC=90°,
∴∠AMC+∠ADC=180°,
∴∠MAD+∠MCD=180°,
∵∠BAC=90°,
∴∠MAD=∠MAC+∠CAD=∠MAC+∠BAM=90°,
∴∠MCD=90°,
在Rt△NCD中,CN=3,CD=1,
根据勾股定理得,ND= ,
∵∠MAD=90°,∠MAN=45°,
∴∠DAN=45°,
∵AM=AD,AN=AN,
∴△MAN≌△DAN,
∴MN=DN= ,
所以答案是 .
【考点精析】认真审题,首先需要了解全等三角形的性质(全等三角形的对应边相等; 全等三角形的对应角相等).