题目内容
【题目】过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,CF.
(1)求证:四边形AECF是菱形;
(2)若AB=6,AC=10,EC=,求EF的长.
【答案】(1)证明见解析;(2).
【解析】
(1)由矩形的性质可得∠ACB=∠DAC,然后利用“ASA”证明△AOF和△COE全等,根据全等三角形对应边相等可得OE=OF,即可证四边形AECF是菱形;
(2)由菱形的性质可得:菱形AECF的面积=EC×AB=AC×EF,进而得到EF的长.
解:(1)∵四边形ABCD是矩形,
∴AD∥BC,
∴∠ACB=∠DAC,
∵O是AC的中点,
∴AO=CO,
在△AOF和△COE中,
,
∴△AOF≌△COE(ASA),
∴OE=OF,且AO=CO,
∴四边形AECF是平行四边形,
又∵EF⊥AC,
∴四边形AECF是菱形;
(2)∵菱形AECF的面积=EC×AB=AC×EF,
又∵AB=6,AC=10,EC=,
∴×6=×10×EF,
解得EF=.
练习册系列答案
相关题目