题目内容
【题目】在△ABC中,∠ABC为锐角,点M为射线AB上一动点,连接CM,以点C为直角顶点,以CM为直角边在CM右侧作等腰直角三角形CMN,连接NB.
(1)如图1,图2,若△ABC为等腰直角三角形,
问题初现:①当点M为线段AB上不与点A重合的一个动点,则线段BN,AM之间的位置关系是 ,数量关系是 ;
深入探究:②当点M在线段AB的延长线上时,判断线段BN,AM之间的位置关系和数量关系,并说明理由;
(2)如图3,∠ACB≠90°,若当点M为线段AB上不与点A重合的一个动点,MP⊥CM交线段BN于点P,且∠CBA=45°,BC=,当BM= 时,BP的最大值为 .
【答案】(1)①AM⊥BN,AM=BN;②AM与BN位置关系是AM⊥BN,数量关系是AM=BN,见解析;(2)2,1.
【解析】
(1)问题初现:①由“SAS”证明△ACM≌△BCN,可得结论;
深入探究:②由“SAS”证明△ACM≌△BCN,可得结论;
(2)过点C作CE⊥AB于点E,过点N作NF⊥CE于点F,则FN∥AB,通过证明四边形FNBE是矩形,可得CE=BE=4,∠CEM=∠ABN=90°,通过证明△CEM∽△MBP,可得,即BP==﹣(BM﹣2)2+1,由二次函数的性质可求解.
解:(1)问题初现:①AM与BN位置关系是AM⊥BN,数量关系是AM=BN.
理由:∵△ABC,△CMN为等腰直角三角形,
∴∠ACB=∠MCN=90°,AC=BC,CM=CN,∠CAB=∠CBA=45°
∴∠ACM=∠BCN,且 AC=BC,CM=CN,
∴△ACM≌△BCN (SAS)
∴∠CAM=∠CBN=45°,AM=BN.
∵∠CAB=∠CBA=45°,
∴∠ABN=45°+45°=90°,即 AM⊥BN
故答案为:AM⊥BN; AM=BN;
深入探究:②当点M在线段AB的延长线上时,AM与BN位置关系是AM⊥BN,数量关系是AM=BN.
理由如下:如图,
∵△ABC,△CMN为等腰直角三角形,
∴∠ACB=∠MCN=90°,AC=BC,CM=CN,∠CAB=∠CBA=45°
∴∠ACM=∠BCN,且 AC=BC,CM=CN,
∴△ACM≌△BCN (SAS)
∴∠CAM=∠CBN=45°,AM=BN.
∵∠CAB=∠CBA=45°,
∴∠ABN=45°+45°=90°,即 AM⊥BN;
(2)如图,过点C作CE⊥AB于点E,过点N作NF⊥CE于点F,则FN∥AB
∵△MCN是等腰直角三角形
∴CM=CN,∠MCN=90°
∴∠ECM+∠FCN=90°,且∠ECM+∠CME=90°
∴∠FCN=∠CME,且CM=CN,∠F=∠CEM=90°
∴△CNF≌△CME(AAS)
∴FN=EC,EM=CF
∵BC=,CE⊥AB,∠CBA=45°
∴CE=BE=4,
∴FN=BE=CE,且FN∥BA
∴四边形FNBE是平行四边形,且∠F=90°
∴四边形FNBE是矩形
∴∠CEM=∠ABN=90°
∴∠PMB+∠MPB=90°
∵CM⊥MP
∴∠CME+∠PMB=90°
∴∠CME=∠MPB,且∠CEM=∠ABN=90°
∴△CEM∽△MBP
∴
∴BP==﹣(BM﹣2)2+1
∴当BM=2时,BP有最大值为1.
故答案为:2,1
【题目】为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.
收集数据:
随机抽取甲乙两所学校的 20 名学生的数学成绩进行
甲 | 91 | 89 | 77 | 86 | 71 | 31 | 97 | 93 | 72 | 91 |
81 | 92 | 85 | 85 | 95 | 88 | 88 | 90 | 44 | 91 | |
乙 | 84 | 93 | 66 | 69 | 76 | 87 | 77 | 82 | 85 | 88 |
90 | 88 | 67 | 88 | 91 | 96 | 68 | 97 | 59 | 88 |
整理、描述数据 :
按如下数据段整理、描述这两组数据
分析数据 :
两组数据的平均数、中位数、众数、方差如下表:
a经统计,表格中m的值是 ___________ .
得出结论:
b若甲学校有 400 名初二学生,估计这次考试成绩 80 分以上人数为____________ .
c可以推断出 _______学校学生的数学水平较高,理由为:①__________________;②_________________.(至少从两个不同的角度说明推断的合理性)