题目内容

【题目】在ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.
(1)求证:四边形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.

【答案】
(1)证明:∵四边形ABCD是平行四边形,

∴AB∥CD.

∵BE∥DF,BE=DF,

∴四边形BFDE是平行四边形.

∵DE⊥AB,

∴∠DEB=90°,

∴四边形BFDE是矩形;


(2)解:∵四边形ABCD是平行四边形,

∴AB∥DC,

∴∠DFA=∠FAB.

在Rt△BCF中,由勾股定理,得

BC= = =5,

∴AD=BC=DF=5,

∴∠DAF=∠DFA,

∴∠DAF=∠FAB,

即AF平分∠DAB.


【解析】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.
【考点精析】掌握角平分线的性质定理和勾股定理的概念是解答本题的根本,需要知道定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网