题目内容
【题目】如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE
证明:∵∠B+∠BCD=180°(已知)
∴AB∥CD( )
∴∠B=∠DCE( )
又∵∠B=∠D(已知 ),
∴___________ (等量代换)
∴ ∥
∴∠E=∠DFE( )
【答案】同旁内角互补,两直线平行;两直线平行,同位角相等;∠DCE=∠D;AD;BE;两直线平行,内错角相等
【解析】
根据平行线的判定得出AB∥CD,根据平行线的性质得出∠B=∠DCE,求出∠DCE=∠D,根据平行线的判定得出AD∥BE,根据平行线的性质得出即可.
证明:∵∠B+∠BCD=180°(已知),
∴AB∥CD(同旁内角互补,两直线平行),
∴∠B=∠DCE(两直线平行,同位角相等),
∵∠B=∠D(已知),
∴∠DCE=∠D(等量代换),
∴AD∥BE( 内错角相等,两直线平行),
∴∠E=∠DFE(两直线平行,内错角相等),
故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;∠DCE=∠D;AD;BE;两直线平行,内错角相等.
练习册系列答案
相关题目