题目内容

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣ <0,正确的是( )

A.①②
B.②④
C.①③
D.③④

【答案】C
【解析】①∵抛物线开口向上,

∴a>0,结论①正确;

②∵抛物线与y轴的交点在y轴负半轴,

∴c<0,结论②错误;

③∵抛物线与x轴有两个交点,

∴△=b2﹣4ac>0,结论③正确;

④∵抛物线的对称轴在y轴右侧,

∴﹣ >0,结论④错误.

所以答案是:C.

【考点精析】解答此题的关键在于理解二次函数图象以及系数a、b、c的关系的相关知识,掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网