题目内容
求证:等腰梯形下底的中点到两腰的距离相等.(要求完成图形,写出已知.求证,并加以证明)
如图:四边形ABCD中,AD∥BC,AB=CD,E是BC的中点,过E作EF⊥AB于F,EG⊥CD于G,求证:EF=EG.
证明:∵E是BC中点,
∴BE=EC.
∵四边形ABCD是等腰梯形,
∴∠B=∠C.
∵∠BFE=∠CGE=90°,
∴△BFE≌△CGE.
∴EF=EG.
证明:∵E是BC中点,
∴BE=EC.
∵四边形ABCD是等腰梯形,
∴∠B=∠C.
∵∠BFE=∠CGE=90°,
∴△BFE≌△CGE.
∴EF=EG.
练习册系列答案
相关题目