题目内容

【题目】(1) 定义:直角三角形两直角边的平方和等于斜边的平方.如:直角三角形的直角边分别为3、4,则斜边的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接写出BC2=__________________

(2)应用:已知正方形ABCD的边长为4,点PAD边上的一点,AP= ,请利用“两点之间线段最短”这一原理,在线段AC上画出一点M,使MP+MD最小,并直接写出最小值的平方为_____________

【答案】 36 17

【解析】试题分析:(1)由直角三角形两直角边的平方和等于斜边的平方变形计算得出;

2

试题解析:

1BC2AB2AC21006436

2如图所示:作点P关于AC的对称点P,连接P’DAC于点M,则点M即为所求,此时有MP+MD最小值,即为P’D的长度.

过点PPE CD于点E

∵正方形ABCD的边长为4,点PAD边上的一点,AP=

PE4DEA P’=AP=1

DP2=DE2+P’E2=16+1=17.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网