题目内容
【题目】某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系,关于销售单价,日销售量,日销售利润的几组对应值如表:
销售单价x(元) | 85 | 95 | 105 | 115 |
日销售量y(个) | 175 | 125 | 75 | 25 |
日销售利润w(元) | 875 | 1875 | 1875 | 875 |
(注:日销售利润=日销售量×(销售单价﹣成本单价))
(1)求y与x的函数关系式;
(2)当销售单价x为多少元时,日销售利润w最大?最大利润是多少元?
(3)当销售单价x为多少元时,日销售利润w在1500元以上?(请直接写出x的范围)
【答案】(1)y=﹣5x+600;(2)当销售单价x为100元时,日销售利润w最大,最大利润是2000元;(3)当销售单价x在90元和110元之间时,日销售利润w在1500元以上.
【解析】
(1)根据题意和表格中的数据可以求得y关于x的函数解析式;
(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;
(3)根据题意列不等式即可得到结论.
解:(1)设y关于x的函数解析式为y=kx+b,,得,
即y关于x的函数解析式是y=﹣5x+600,
(2)设成本价为a元/个
当x=85时,875=175(85-a),得a=80,
根据题意得,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,
∴当x=100时,w取得最大值,此时w=2000,
答:当销售单价x为100元时,日销售利润w最大,最大利润是2000元;
(3)根据题意得,﹣5(x﹣100)2+2000>1500,
解得90<x<110,
答:当销售单价x在90元和110元之间时,日销售利润w在1500元以上.
【题目】某校团委举办了一次“中国梦,我的梦”演讲比赛,满分10分,学生得分均为整数,成绩达6分以上(含6分)为合格,达9分以上(含9分)为优秀.这次竞赛中甲,乙两组学生成绩分布的条形统计图如下:
(1)将下表补充完整:
组别 | 平均分 | 中位数 | 众数 | 方差 | 合格率 | 优秀率 |
甲 | 6.8 |
| 6 | 3.96 | 90% | 20% |
乙 |
| 7.5 |
| 2.76 | 80% | 10% |
(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是 组学生(填“甲””或“乙”);
(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.