题目内容
【题目】已知:如图,在Rt△ABC中,∠ACB=90°,BC=12,cosB=,D、E分别是AB、BC边上的中点,AE与CD相交于点G.
(1)求CG的长;
(2)求tan∠BAE的值.
【答案】(1);(2)tan∠BAE=.
【解析】
(1)根据在Rt△ABC中,∠ACB=90°,BC=12,cosB=,可以求得AB的长,然后根据点D为AB的中点,可以得到CD的长,再根据点G是△ABC中点的交点,可以得到CG=CD,从而可以求得CG的长;
(2)作EF⊥AB于点G,然后根据题意,可以求得EF和AF的长,从而可以得到tan∠BAE的值.
解:(1)∵在Rt△ABC中,∠ACB=90°,BC=12,cosB=,
∴,
∵D是边上的中点,
∴,
又∵点E是BC边上的中点,
∴点G是△ABC的重心,
∴;
(2)∵点E是BC边上的中点,
∴,
过点E作EF⊥AB,垂足为F,
∵在Rt△BEF中,cosB=,
BF=BEcosB=,
∴,
∵AF=AB﹣BF=18﹣4=14,
∴tan∠BAE=.
【题目】某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.
(1)求该种水果每次降价的百分率;
(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?
时间x(天) | 1≤x<9 | 9≤x<15 | x≥15 |
售价(元/斤) | 第1次降价后的价格 | 第2次降价后的价格 | |
销量(斤) | 80﹣3x | 120﹣x | |
储存和损耗费用(元) | 40+3x | 3x2﹣64x+400 |
(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?