题目内容
【题目】如图,点在的直径的延长线上,点在上,且AC=CD,∠ACD=120°.
(1)求证:是的切线;
(2)若的半径为2,求图中阴影部分的面积.
【答案】(1)见解析
(2)图中阴影部分的面积为π.
【解析】
(1)连接OC.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;
(2)先根据直角三角形中30°的锐角所对的直角边是斜边的一半求出OD,然后根据勾股定理求出CD,则阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.
(1)证明:连接OC.
∵AC=CD,∠ACD=120°,
∴∠A=∠D=30°.
∵OA=OC,
∴∠2=∠A=30°.
∴∠OCD=∠ACD-∠2=90°,
即OC⊥CD,
∴CD是⊙O的切线;
(2)解:∠1=∠2+∠A=60°.
∴S扇形BOC==.
在Rt△OCD中,∠D=30°,
∴OD=2OC=4,
∴CD==.
∴SRt△OCD=OC×CD=×2×=.
∴图中阴影部分的面积为:-.
【题目】张老师计划通过步行锻炼身体,她用运动手环连续记录了6天的运动情况,并用统计表和统计图记录数据:
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 | 4月6日 |
步行数(步) | 10672 | 4927 | 5543 | 6648 | ||
步行距离(公里) | 6.8 | 3.1 | 3.4 | 4.3 | ||
卡路里消耗(千卡) | 157 | 79 | 91 | 127 | ||
燃烧脂肪(克) | 20 | 10 | 12 | 16 |
(1)请你将手环记录的4月5日和4月6日的数据(如图①)填入表格
(2)请你将条形统计图(如图②)补充完整
(3)张老师这6天平均每天步行约______公里,张老师分析发现每天步行距离和消耗的卡路里近似成正比例关系,她打算每天消耗的卡路里至少达到100千卡,那么每天步行距离大约至少为______公里(精确到0.1公里)
【题目】为了解某校八、九年级部分学生的睡眠情况,随机抽取了该校八、九年级部分学生进行调查,已知抽取的八年级与九年级的学生人数相同,利用抽样所得的数据绘制如图的统计图表:
睡眠情况分段情况如下
组别 | 睡眠时间x(小时) |
根据图表提供的信息,回答下列问题:
(Ⅰ)直接写出统计图中的值 ;
(Ⅱ)睡眠时间少于6.5小时为严重睡眠不足,则从该校八、九年级各随机抽一名学生,被抽到的这两位学生睡眠严重不足的可能性分别有多大?