题目内容

在□ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.
(1)试说明:AE⊥BF;
(2)判断线段DF与CE的大小关系,并说明理由.

(1)证明见解析;(2)DF=CE.理由见解析.

解析试题分析:(1)因为AE,BF分别是∠DAB,∠ABC的角平分线,那么就有∠MAB=∠DAB,∠MBA=∠ABC,而∠DAB与∠ABC是同旁内角互补,所以,能得到∠MAB+∠MBA=90°,即得证.
(2)两条线段相等.利用平行四边形的对边平行,以及角平分线的性质,可以得到△ADE和△BCF都是等腰三角形,那么就有CF=BC=AD=DE,再利用等量减等量差相等,可证.
(1)∵在?ABCD中,AD∥BC,
∴∠DAB+∠ABC=180°.(1分)
∵AE、BF分别平分∠DAB和∠ABC,
∴∠DAB=2∠BAE,∠ABC=2∠ABF.
∴2∠BAE+2∠ABF=180°.
即∠BAE+∠ABF=90°.
∴∠AMB=90°.
∴AE⊥BF.
(2)线段DF与CE是相等关系,即DF=CE,
∵在?ABCD中,CD∥AB,
∴∠DEA=∠EAB.
又∵AE平分∠DAB,
∴∠DAE=∠EAB.
∴∠DEA=∠DAE.
∴DE=AD.(6分)
同理可得,CF=BC.
又∵在?ABCD中,AD=BC,
∴DE=CF.
∴DE-EF=CF-EF.
即DF=CE.
考点:1.相似三角形的判定与性质;2.角平分线的性质;3.平行四边形的性质.

练习册系列答案
相关题目

提出问题:如图①,在四边形ABCD中,点E、F是AD的n等分点中最中间2个,点G、H是BC的n等分点中最中间2个,(其中n为奇数),连接EG、FH,那么S四边形EFHG与S四边形ABCD之间有什么关系呢?
                                         
探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
(1)如图②:四边形ABCD中,点E、F是AD的3等分点,点G、H是BC的3等分点,连接EG、FH,那么S四边形EFHG与S四边形ABCD之间有什么关系呢?
如图③,连接EH、BE、DH,

因为△EGH与△EBH高相等,底的比是1:2,
所以SEGH=SEBH
因为△EFH与△DEH高相等,底的比是1:2,
所以SEFH=SDEH
所以SEGH+SEFH=SEBH +SDEH
即S四边形EFHG=S四边形EBHD
连接BD,
因为△DBE与△ABD高相等,底的比是2:3,
所以SDBE=SABD
因为△BDH与△BCD高相等,底的比是2:3,
所以SBDH=SBCD
所以SDBE +SBDH=SABD+SBCD =(SABD+SBCD)
=S四边形ABCD
即S四边形EBHD=S四边形ABCD
所以S四边形EFHG=S四边形EBHD=×S四边形ABCD=S四边形ABCD
(1)如图④:四边形ABCD中,点E、F是AD的5等分点中最中间2个,点G、H是BC的5等分点中最中间2个,连接EG、FH,猜想:S四边形EFHG与S四边形ABCD之间有什么关系呢                       
验证你的猜想:

(2)问题解决:如图①,在四边形ABCD中,点E、F是AD的n等分点中最中间2个,点G、H是BC的n等分点中最中间2个,连接EG、FH,(其中n为奇数)
那么S四边形EFHG与S四边形ABCD之间的关系为:                            (不必写出求解过程)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网