题目内容
如图,在?ABCD中,E,F分别为BC,AB中点,连接FC,AE,且AE与FC交于点G,AE的延长线与DC的延长线交于点N.
(1)求证:△ABE≌△NCE;
(2)若AB=3n,FB=GE,试用含n的式子表示线段AN的长.
(1)证明见解析
(2)6n
解析试题分析:(1)根据平行四边形的性质可得AB∥CN,由此可知∠B=∠ECN,再根据全等三角形的判定方法ASA即可证明△ABE≌△NCE;
(2)因为AB∥CN,所以△AFG∽△CNG,利用相似三角形的性质和已知条件即可得到含n的式子表示线段AN的长.
试题解析:(1)∵四边形ABCD是平行四边形,
∴AB∥CN,
∴∠B=∠ECN,
∵E是BC中点,
∴BE=CE,
又∵∠AEB=∠CEN,
∴△ABE≌△NCE
(2)∵△ABE≌△NCE,
∴AB=CN,AE=NE
∵AB∥CN,
∴△AFG∽△CNG,AF=
∴AF:CN=AG:GN=1:2,
∵AE+NE=AG+GN,
∴AG=2GE,EN=3GE
∵AB=3n,FB=GE=,
∴GE=n,AG=2n,EN=3n
∴AN=AG+GE+EN=6n.
考点:1、平行四边形的性质;2、全等三角形的判定与性质;3、相似三角形的判定与性质
练习册系列答案
相关题目