题目内容
【题目】如图,△ABC中,∠C=Rt∠,AC=8cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒2cm,设运动的时间为t秒。
(1)当t为何值时,CP把△ABC的周长分成相等的两部分。
(2)当t为何值时,CP把△ABC的面积分成相等的两部分,并求出此时CP的长;
(3)当t为何值时,△BCP为等腰三角形?
【答案】(1)t=6秒;(2)t=6.5秒, CP=5cm;(3)当t=3秒或5.4秒或6秒或6.5秒时,△BCP为等腰三角形.
【解析】
试题(1)先由勾股定理求出△ABC的斜边AB=10cm,则△ABC的周长为24cm,所以当CP把△ABC的周长分成相等的两部分时,点P在AB上,此时CA+AP=BP+BC=12cm,再根据时间=路程÷速度即可求解;
(2)根据中线的性质可知,点P在AB中点时,CP把△ABC的面积分成相等的两部分,进而求解即可;
(3)△BCP为等腰三角形时,分三种情况进行讨论:①CP=CB;②BC=BP;③PB=PC.
练习册系列答案
相关题目