题目内容
【题目】如图,△ABC≌△ADE,BC与DE交于点F.若∠BAE=60°,∠DAC=160°,则∠DFC的度数为____.
【答案】130°
【解析】
先根据全等三角形对应角相等求出∠BAC=∠DAE,所以∠BAD=∠CAE,然后求出∠BAD的度数,再根据∠B=∠D,∠AGD=∠FGB,可得∠DFB=∠BAD,然后可求∠DFC的度数.
解:∵△ABC≌△ADE,
∴∠BAC=∠DAE,∠B=∠D,
又∵∠BAD=∠DAE ∠BAE,∠CAE=∠BAC ∠BAE,
∴∠BAD=∠CAE,
∵∠DAC=160°,∠BAE=60°,
∴∠BAD=(∠DAC∠BAE)=(160°60°)=50°,
∵∠B=∠D,∠AGD=∠FGB,
∴∠DFB=∠BAD=50°,
∴∠DFC=180°-50°=130°,
故答案为:130°.
练习册系列答案
相关题目