题目内容

【题目】如图,在矩形ABCD中,P为AD上一点,连接BP,CP,过C作CE⊥BP于点E,连接ED交PC于点F.

(1)求证:△ABP∽△ECB;
(2)若点E恰好为BP的中点,且AB=3,AP=k(0<k<3).
①求 的值(用含k的代数式表示);
②若M、N分别为PC,EC上的任意两点,连接NF,NM,当k= 时,求NF+NM的最小值.

【答案】
(1)

证明:在矩形ABCD中,

∵∠A=∠ABC=90°,

∵CE⊥BP,

∴∠CEB=90°,

∴∠A=∠CEB,

∴∠APB+∠ABP=∠ABP+∠PBC=90°,

∴∠APB=∠PBC,

∴△ABP∽△ECB


(2)

解:①∵△ABP∽△ECB,

∵BP= ,E为BP的中点,

∴BE=

∴BC=

过P作PH⊥PD交DE于H,

∴PD=BC﹣AP=

∵∠BEC=∠ADC=90°,

∴P,E.C,D四点共圆,

∴∠PDH=∠PCE=∠BCE=∠ABP,

∴△APB∽△PHD,

∴PH=

=

②当k= 时, =

过F作FG⊥BC于G交CE于N,反向延长交AD于H,

则FH⊥AD,过N作NM⊥PC于M,

∴NF+NM的最小值即为FG的长,

∴FG=

即NF+NM的最小值是


【解析】(1)根据矩形的想知道的∠A=∠ABC=90°,由余角的性质得到∠APB=∠PBC,根据相似三角形的判定定理即可得到结论;(2)①根据相似三角形的性质得到 ,得到BP= ,过P作PH⊥PD交DE于H,推出P,E.C,D四点共圆,根据圆周角定理得到∠PDH=∠PCE=∠BCE=∠ABP,根据相似三角形的想知道的 ,即可得到结论;②把k= 代入 = ,过F作FG⊥BC于G交CE于N,反向延长交AD于H,则FH⊥AD,过N作NM⊥PC于M,根据线段公理得到NF+NM的最小值即为FG的长,即可得到结论.
【考点精析】解答此题的关键在于理解相似三角形的性质的相关知识,掌握对应角相等,对应边成比例的两个三角形叫做相似三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网