题目内容
【题目】如图,在平面直角坐标系中,点B在x轴的正半轴上,AO=AB,∠OAB=90°,OB=12,点C、D均在边OB上,且∠CAD=45°,若△ACO的面积等于△ABO面积的,则点D的坐标为 _______ 。
【答案】(9,0)
【解析】
将△AOC绕点A逆时针旋转,使得AO和AB重合,构造出直角三角形,利用旋转的性质证明全等,通过勾股定理设出未知数列方程求解.
解:将△AOC绕点A逆时针旋转,使得AO和AB重合,旋转后点C到点C′的位置,连接C′D,
∵AO=AB,∠OAB=90°,
∴△AOB为等腰直角三角形,
∵∠CAD=45°,
∴∠C′AD=45°,
又∵AC=AC′,AD=AD
∴△ACD≌△AC′D(SAS)
∴CO=CD′
∵若△ACO的面积等于△ABO面积的,OB=12,
∴OC= BC′=4,BC=8,
∵∠AOC=∠AB C′=45°,∠ABO=45°
∴∠C′BO=90°,
设CD=x,在Rt△DBC′中,
C′D2=BD2+BC′2,
解得:x=5,
即CD=5,
∵OC=4,
所以OD=9,
∴D(9,0)
练习册系列答案
相关题目