题目内容
如图,已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO的大小是( )
A.70° | B.110° | C.140° | D.150° |
根据四边形的内角和定理可得:
∠DAB+∠DCB=220°,
∵OA=OB=OC,∠ABC=∠ADC=70°,
∴∠OAB=∠OBA,∠OCB=∠OBC,
∴∠OAB+∠OCB=70°,
∴∠DAO+∠DCO=220°-70°=150度.
故选D.
∠DAB+∠DCB=220°,
∵OA=OB=OC,∠ABC=∠ADC=70°,
∴∠OAB=∠OBA,∠OCB=∠OBC,
∴∠OAB+∠OCB=70°,
∴∠DAO+∠DCO=220°-70°=150度.
故选D.
练习册系列答案
相关题目