题目内容
【题目】第二十四届冬季奥林匹克运动会将于2022年在北京市和张家口市举行.为了调查学生对冬奥知识的了解情况,从甲、乙两校各随机抽取20名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.
a.甲校20名学生成绩的频数分布表和频数分布直方图如图:
甲校学生样本成绩频数分布表(表1)
成绩m(分) | 频数(人数) | 频率 |
50≤m<60 | a | 0.05 |
60≤m<70 | b | c |
70≤m<80 | 3 | 0.15 |
80≤m<90 | 8 | 0.40 |
90≤m<100 | 6 | 0.30 |
合计 | 20 | 1.0 |
b.甲校成绩在80≤m<90的这一组的具体成绩是:
87 88 88 88 89 89 89 89
c.甲、乙两校成绩的平均分、中位数、众数、方差如表所示(表2):
学校 | 平均分 | 中位数 | 众数 | 方差 |
甲 | 84 | n | 89 | 129.7 |
乙 | 84.2 | 85 | 85 | 138.6 |
根据以如图表提供的信息,解答下列问题:
(1)表1中a= ;表2中的中位数n= ;
(2)补全图1甲校学生样本成绩频数分布直方图;
(3)在此次测试中,某学生的成绩是87分,在他所属学校排在前10名,由表中数据可知该学生是 校的学生(填“甲”或“乙”),理由是 ;
(4)假设甲校200名学生都参加此次测试,若成绩80分及以上为优秀,估计成绩优秀的学生人数为 .
【答案】(1)1;88.5;(2)图见解析;(3)乙,乙的中位数是85,87>85;(4)140人
【解析】
(1)根据频数分布表和频数分布直方图的信息列式计算即可得到a的值,根据中位数的定义求解可得n的值;
(2)根据题意补全频数分布直方图即可;
(3)根据甲这名学生的成绩为87分,小于甲校样本数据的中位数88.5分,大于乙校样本数据的中位数85分可得;
(4)利用样本估计总体思想求解可得.
解:(1)a=20×0.05=1,
由频数分布表和频数分布直方图中的信息可知,排在中间的两个数是88和89,
∴n==88.5;
故答案为:1,88.5;
(2)∵b=20﹣1﹣3﹣8﹣6=2;
∴补全图1甲校学生样本成绩频数分布直方图如图所示;
(3)在此次测试中,某学生的成绩是87分,在他所属学校排在前10名,由表中数据可知该学生是乙校的学生,
理由:乙的中位数是85,87>85;
故答案为:乙,乙的中位数是85,87>85;
(4)200×=140,
答:成绩优秀的学生人数为140人.
故答案为:140人.