题目内容
【题目】已知:如图,⊙O是Rt△ABC的内切圆,∠C=90°.
(1)若AC=12cm,BC=9cm,求⊙O的半径r;
(2)若AC=b,BC=a,AB=c,求⊙O的半径r.
【答案】(1)r=3cm. (2) r=(a+b-c).
【解析】
首先设AC、AB、BC与⊙O的切点分别为D、E、F;易证得四边形OFCD是正方形;那么根据切线长定理可得: CD=CF=(AC+BC-AB),由此可求出r的长.
(1)如图,连接OD,OF;
在Rt△ABC中,∠C=90°,AC=12cm,BC=9cm;
根据勾股定理AB==15cm;
四边形OFCD中,OD=OF,∠ODC=∠OFC=∠C=90°;
则四边形OFCD是正方形;由切线长定理,得:AD=AE,CD=CF,BE=BF;
则CD=CF=(AC+BC-AB);
即:r=(12+9-15)=3cm.
(2)当AC=b,BC=a,AB=c,由以上可得: CD=CF=(AC+BC-AB);
即:r=(a+b-c).则⊙O的半径r为:(a+b-c).
练习册系列答案
相关题目