题目内容
【题目】如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CECA.
(1)求证:BC=CD;
(2)分别延长AB,DC交于点P,若PB=OB,CD=2 ,求⊙O的半径.
【答案】
(1)证明:∵DC2=CECA,
∴ = ,
而∠ACD=∠DCE,
∴△CAD∽△CDE,
∴∠CAD=∠CDE,
∵∠CAD=∠CBD,
∴∠CDB=∠CBD,
∴BC=DC;
(2)解:连结OC,如图,设⊙O的半径为r,
∵CD=CB,
∴ = ,
∴∠BOC=∠BAD,
∴OC∥AD,
∴ = = =2,
∴PC=2CD=4 ,
∵∠PCB=∠PAD,∠CPB=∠APD,
∴△PCB∽△PAD,
∴ = ,即 = ,
∴r=4,
即⊙O的半径为4.
【解析】(1)由DC2=CECA和∠ACD=∠DCE,可判断△CAD∽△CDE,得到∠CAD=∠CDE,再根据圆周角定理得∠CAD=∠CBD,所以∠CDB=∠CBD,于是利用等腰三角形的判定可得BC=DC;(2)连结OC,如图,设⊙O的半径为r,先证明OC∥AD,利用平行线分线段成比例定理得到 = =2,则PC=2CD=4 ,然后证明△PCB∽△PAD,利用相似比得到 = ,再利用比例的性质可计算出r的值.
练习册系列答案
相关题目