题目内容
【题目】如图,已知在矩形纸片中,将纸片折叠,使顶点与边的点重合.若折痕分别与交于点的外接圆与直线有唯一一个公共点,则折痕的为______.
【答案】
【解析】
根据折叠的性质判断出AG=GE,∠AGF=∠EGF,再由CD∥AB得出∠EFG=∠AGF,从而判断出EF=AG,得出四边形AGEF是平行四边形,继而结合AG=GE,判定四边形AGEF是菱形;连接ON,得出ON是梯形ABCE的中位线,在RT△ADE中,利用勾股定理可解出x,继而可得出折痕FG的长度.
由折叠的性质可得,GA=GE,∠AGF=∠EGF,
∵DC∥AB,
∴∠EFG=∠AGF,
∴∠EFG=∠EGF,
∴EF=EG=AG,
∴四边形AGEF是平行四边形(EF∥AG,EF=AG),
又∵AG=GE,
∴四边形AGEF是菱形
令△AED的外接圆与直线有唯一一个公共点为N,连接ON,如图所示,
∵△AED是直角三角形,AE是斜边,点O是AE的中点,△AED的外接圆与BC相切于点N,
∴ON⊥BC,
∵点O是AE的中点,
∴ON是梯形ABCE的中位线,
设CE=x,则ED=2-x,2ON=CE+AB=x+2,
在Rt△AED中,AE=2OE=2ON=x+2,
AD2+DE2=AE2,
∴12+(2-x)2=(2+x)2,
得x=,
,
∵△FEO∽△AED,
∴,
解得:FO=,
∴FG=2FO=.
故答案为:.
练习册系列答案
相关题目