题目内容
【题目】如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
【答案】B
【解析】根据作图过程得到PB=PC,然后利用D为BC的中点,得到PD垂直平分BC,从而利用垂直平分线的性质对各选项进行判断即可.
解:根据作图过程可知:PB=CP,
∵D为BC的中点,
∴PD垂直平分BC,
∴①ED⊥BC正确;
∵∠ABC=90°,
∴PD∥AB,
∴E为AC的中点,
∴EC=EA,
∵EB=EC,
∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确,
故正确的有①②④,
故选B.
练习册系列答案
相关题目